1. Grain Size Distribution Documentation of Calculations

The calculations used in the program are fairly simple and for the most part follow ASTM D 422. The following sections present the equations used.

1.1 Moisture Content

Moisture content is calculated with the following formula:

$$
\begin{equation*}
M C=100 \% * \frac{W_{w t}-W_{d t}}{W_{d t}-W_{t}} \tag{1.1}
\end{equation*}
$$

Where:
$\mathrm{MC}=$ the moisture content
$\mathrm{W}_{\mathrm{wt}}=$ the weight of the moisture specimen with tare
$\mathrm{W}_{\mathrm{dt}}=$ the weight of the dried specimen with tare
$W_{t}=$ the weight of the container

1.2 Sieve Test Calculations

1.2.1 Wash Test

$$
\begin{equation*}
P F_{200}=\frac{W_{t s}-W_{\text {wash }}}{W_{t s}} * 100 \% \tag{1.2}
\end{equation*}
$$

Where:
$\mathrm{PF}_{200}=$ the percent of material finer than the $\# 200$ sieve
$\mathrm{W}_{\text {ts }}=$ the total sample weight
$\mathrm{W}_{\text {wash }}=$ the after-wash weight
The program charts PF_{200} as the $\# 200$ percentage if either no further sieve test data are entered (i.e., only a \#200 wash test is performed), or the sieve test does not include a \#200 sieve.

1.2.2 Cumulative Weight Retained Method

$$
\begin{equation*}
P F=\left(1-\frac{W_{c}-W_{c t}}{W_{t s}}\right) * 100 \% \tag{1.3}
\end{equation*}
$$

Where:

$\mathrm{PF}=$ the percent finer
$\mathrm{W}_{\mathrm{c}}=$ the cumulative weight retained
$\mathrm{W}_{\mathrm{ct}}=$ the tare weight of the cumulative pan
$\mathrm{W}_{\mathrm{ts}}=$ the total sample weight

An example calculation:

Cumulative weight retained $=1915.2$ grams
Cumulative pan tare $=382.5$ grams
Sample weight $=1671.4$ grams

$$
P F=\left(1-\frac{1915.2-382.5}{1671.4}\right) * 100 \%=8.3 \%
$$

1.2.3 Per-Sieve Weight Retained Method

$$
\begin{equation*}
P F=1-\frac{\left(W_{s t}-W_{t}\right)+W_{l s}}{W_{t s}} * 100 \% \tag{1.4}
\end{equation*}
$$

Where:

$\mathrm{W}_{\text {st }}=$ the weight of a sieve and its retained material
$W_{t}=$ the weight of the sieve
$\mathrm{W}_{\text {ls }}=$ the total amount of material retained on all larger sieves
$\mathrm{W}_{\mathrm{ts}}=$ the weight of the total sample

An example calculation:

To calculate the percent finer for the third largest sieve in a sieve nest, we need:
Total sample weight $=11.94$ grams
Weight retained + tare for the third largest sieve $=9.66$ grams
Tare weight for the third largest sieve $=\mathbf{4} .19$ grams
Material retained on the larger sieves: $\mathbf{0 . 0 0}$ grams on the largest $+\mathbf{0 . 5 4}$ grams on the second largest.

$$
P F=1-\frac{(9.66-4.19)+0.54}{11.94} * 100 \%=49.7 \%
$$

1.2.4 Sample Splits

If the sample is split, the subsequent percent finer values are found as follows:

$$
\begin{equation*}
P F_{t o t}=\frac{C B T-W R}{D W T} \tag{1.5}
\end{equation*}
$$

Where:

$\mathrm{PF}_{\text {tot }}=$ the overall percent finer
$\mathrm{WR}=$ the weight retained of the split sample
DWT, the post-split sample dry weight, is calculated as follows:

$$
\begin{equation*}
D W T=\frac{S G D W}{P F_{s s}-P F W} \tag{1.6}
\end{equation*}
$$

Where:

SGDW $=$ the split gradation dry sample weight
$\mathrm{PF}_{\mathrm{ss}}=$ the overall percent finer than the split sieve
PFW $=$ the percent washed out from the \#200 wash test (or 0 if a wash test was not performed)

CBT, the biased total weight, is calculated as follows:

$$
\begin{equation*}
C B T=S G D W+P F W * D W T \tag{1.7}
\end{equation*}
$$

An example calculation:

$\mathrm{PF}_{\mathrm{ss}}=72.3 \%$
SGDW $=1871.30$ grams
$\mathrm{PFW}=0.00 \%$
$\mathrm{WR}=422.00$ grams

$$
\begin{gathered}
D W T=\frac{1871.30}{72.30-0.00}=25.90 \\
C B T=1871.30+(0.00 * 25.9)=1871.30 \\
P F=\frac{1871.30-442.00}{25.90}=55.2 \%
\end{gathered}
$$

1.3 Hydrometer Test Calculations

1.3.1 Particle Size

$$
\begin{equation*}
P S=\sqrt{\frac{30 * v * L}{980 *(G S-G W) * E T}} \tag{1.8}
\end{equation*}
$$

Where:

Ps $=$ the particle size in mm.
$\mathrm{v}=$ the fluid viscosity in centipoises
$\mathrm{L}=$ the effective depth in cm .
$\mathrm{GS}=$ the specific gravity of the soil particles
GW = the specific gravity of water, corrected for temperature
$\mathrm{Et}=$ the elapsed time in minutes
For 152 H hydrometers, L , the effective depth, is calculated as follows:

$$
\begin{gather*}
L=16.295-0.165 * R m \tag{1.9}\\
R m=R+C m \tag{1.10}
\end{gather*}
$$

Where:

$\mathrm{Rm}=$ the hydrometer reading corrected for the height of the meniscus.
$\mathrm{R}=$ the hydrometer reading, taken at the top of the meniscus. (Alt., the hydrom-
eter reading taken at the bottom of the meniscus if the meniscus correction is entered as 0.)
$\mathrm{Cm}=$ the meniscus height

For 151 H hydrometers L is calculated with this equation:

$$
\begin{equation*}
L=16.295-0.2645 * R m \tag{1.11}
\end{equation*}
$$

\Rightarrow Note that the effective depth equation can be changed by the user on a per-test basis.
v , the fluid viscosity, is calculated as:

$$
\begin{equation*}
v=C 1+T *(C 2+T *(C 3+T *(C 4+T * C 5))) \tag{1.12}
\end{equation*}
$$

Where:

$\mathrm{T}=$ the fluid temperature, in degrees Celsius
$\mathrm{C} 1=0.01732483379693$
$\mathrm{C} 2=-5.041574656095 \mathrm{E}-04$
$\mathrm{C} 3=8.387438669317 \mathrm{E}-06$
$\mathrm{C} 4=-7.401129271698 \mathrm{E}-08$
$\mathrm{C} 5=2.625994080072 \mathrm{E}-10$

GW, the specific gravity of water, is calculated as:

$$
\begin{equation*}
G W=C 1+T *(C 2+T *(C 3+T * C 4)) \tag{1.13}
\end{equation*}
$$

Where:

$\mathrm{T}=$ the fluid temperature, in degrees Celsius
$\mathrm{C} 1=0.99991003252$
$\mathrm{C} 2=0.00005201921$
$\mathrm{C} 3=-0.00000751229$
$\mathrm{C} 4=0.00000003605183$
An example calculation for a 152 H hydrometer:
$\mathrm{ET}=8$ minutes
Temp $=23.5$ Celsius
$\mathrm{R}=34$
$\mathrm{Cm}=1$
$\mathrm{GS}=2.7$
$\mathrm{Rm}=33(=\mathrm{R}-\mathrm{Cm})$
$G W=0.997452$ (calculation not shown)
$\mathrm{v}=0.00925$ (calculation not shown)
$\mathrm{L}=10.56$ (calculation not shown)

$$
P S=\sqrt{\frac{30 * 0.00925 * 10.56}{980 *(2.7-0.9975) * 8}}=0.0148 \mathrm{~mm}
$$

1.3.2 Percent Finer

For 152 H hydrometers, the percent finer than a given opening size is calculated as:

$$
\begin{equation*}
P F=\frac{R c * a}{W B} * 100 \% \tag{1.14}
\end{equation*}
$$

Where:

$\mathrm{PF}=$ the percent finer
$\mathrm{Rc}=$ the corrected hydrometer reading
$\mathrm{a}=$ the specific gravity of solids correction factor
$\mathrm{WB}=$ the biased hydrometer sample weight
For 151 H hydrometers, the calculation is:

$$
\begin{equation*}
P F=\frac{100 * G S}{W B *(G S-1)} * R c \tag{1.15}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mathrm{PF}=\text { the percent finer } \\
& \mathrm{Rc}=\text { the corrected hydrometer reading } \\
& \mathrm{WB}=\text { the biased hydrometer sample weight } \\
& \mathrm{GS}=\text { the soil specific gravity }
\end{aligned}
$$

When using automatic temperature correction, the corrected hydrometer reading (Rc) is calculated as follows:

$$
\begin{equation*}
R c=R+C t+C c \tag{1.16}
\end{equation*}
$$

Where:

$\mathrm{R}=$ the actual hydrometer reading (in thousandths for 151 H)
$\mathrm{Cc}=$ the composite correction at 20 degrees Celsius, as entered by the user
$\mathrm{Ct}=$ the composite correction
For 152 H hydrometers, Ct , the composite correction, is calculated as follows:

$$
\begin{equation*}
C t=-12.35952257+T *(1.51062059+T *(-0.06923056+T * 0.00122483)) \tag{1.17}
\end{equation*}
$$

Where:

$\mathrm{T}=$ the fluid temperature, in degrees Celsius
For 151 H hydrometers, Ct is calculated as:

$$
\begin{equation*}
C t=-7.6338851+T *(0.93361976+T *(-0.04284159+T * 0.000758977)) \tag{1.18}
\end{equation*}
$$

Where:

$\mathrm{T}=$ the fluid temperature, in degrees Celsius

When using the multi-point (linear) temperature correction, the corrected hydrometer reading is calculated as follows:

$$
\begin{equation*}
R c=R+C t \tag{1.19}
\end{equation*}
$$

Where:

$\mathrm{R}=$ the actual hydrometer reading (in thousandths for 151 H)
$\mathrm{Ct}=$ the temperature correction, as interpolated from a linear regression line constructed from the pairs of temperature and reading values entered by the user into the hydrometer correction grid.

- For test temperatures less than the lowest temperature entered into the correction grid, the program will use the correction value corresponding to the lowest correction temperature entered; likewise, for test temperatures higher than the highest temperature entered into the correction grid, the program will use the correction value corresponding to the highest correction temperature entered.

The specific gravity correction factor is:

$$
\begin{equation*}
a=\frac{0.6226415 * G S}{G S-1} \tag{1.20}
\end{equation*}
$$

Where:
GS $=$ the specific gravity of the solids
The biased sample weight is calculated as:

$$
\begin{equation*}
W B=\frac{W h s * 10000}{P s s *(100+M h)} \tag{1.21}
\end{equation*}
$$

Where:

$\mathrm{WB}=$ the biased sample weight, in grams
Whs = the air dry hydrometer sample weight
PSS $=$ the percent passing the separation sieve
$\mathrm{Mh}=$ the hygroscopic moisture content per ASTM D 422 § 8

An example calculation using a 152 H hydrometer:

$\mathrm{ET}=8$ minutes
Temp. $=23.5$ degrees Celsius
$\mathrm{R}=34$
$\mathrm{GS}=2.7$
$\mathrm{Mh}=3.5 \%$
Linear correction pairs: $\left(-6.0\right.$ at $\left.20^{\circ}\right),\left(-5.6\right.$ at $\left.22^{\circ}\right),\left(-4.7\right.$ at $\left.25^{\circ}\right)$

By interpolation, Cc at $23.5^{\circ}=-5.15$

$$
\begin{gathered}
R c=34+(-5.15)=28.9 \\
a=\frac{0.6226415 * 2.7}{2.7-1}=0.989 \\
W B=\frac{51.7 * 10000}{100 *(100+3.5)}=50.0 \text { grams } \\
P F=\frac{28.9 * 0.989}{50.0}=57.0 \%
\end{gathered}
$$

An additional calculation, using a 151 H hydrometer:

$\mathrm{ET}=15$ minutes
Temp $=\mathbf{2 2}$ Celsius
$\mathrm{R}=21.5$
$G S=2.65$
$\mathrm{WB}=63.5 \mathrm{grams}$
Cc at 22 degrees Celsius $=-2.2$

$$
\begin{gathered}
R c=21.5+(-2.2)=19.3 \\
P F=\frac{100 * 2.65}{63.5 * 1.65} * 19.3=48.8 \%
\end{gathered}
$$

1.3.3 Calculation of Fractional Components

The fractional components and percentage diameters ($\mathrm{D}_{85}, \mathrm{D}_{60}, \mathrm{D}_{50}$, etc.) are computed by creating a cubic spline model of the particle size distribution curve then solving the model for the curve values at various percentages.

The classification coefficients C_{c} and C_{u} are calculated as follows:

$$
\begin{gather*}
C_{c}=\frac{D_{30} * D_{30}}{D_{60} * D_{10}} \tag{1.22}\\
C_{u}=\frac{D_{60}}{D_{10}} \tag{1.23}
\end{gather*}
$$

1.3.4 Tables of Constants

Table 1.1: Correction Factor for Specific Gravities Other than 2.65 when using Hydrometer 152H

SPECIFIC GRAVITY	CORR. FACTOR	SPECIFIC GRAVITY	CORR. FACTOR
2.50	1.038	2.68	0.994
2.51	1.036	2.69	0.992
2.52	1.033	2.70	0.989
2.53	1.030	2.71	0.987
2.54	1.028	2.72	0.985
2.55	1.025	2.73	0.983
2.56	1.022	2.74	0.981
2.57	1.020	2.75	0.979
2.58	1.017	2.76	0.977
2.59	1.015	2.77	0.975
2.60	1.012	2.78	0.973
2.61	1.010	2.79	0.971
2.62	1.008	2.80	0.969
2.63	1.005	2.81	0.967
2.64	1.003	2.82	0.965
2.65	1.001	2.83	0.963
2.66	0.998	2.84	0.962
2.67	0.996	2.85	0.960

Table 1.2: Automatic Temperature Correction Factor as a Function of Temperature

TEMP, DEG C.	SPECIFIC GRAVITY OF WATER	VISCOSITY OF WATER	TEMP. CORR. FACTOR FOR 152H	TEMP. CORR. FACTOR FOR 151H
15.0	0.99912	0.01141	-1.14	-0.71
15.5	0.99050	0.01126	-1.02	-0.63
16.0	0.99897	0.01111	-0.90	-0.55
16.5	0.99889	0.01097	-0.78	-0.48
17.0	0.99880	0.01083	-0.67	-0.41
17.5	0.99871	0.01069	-0.56	-0.35
18.0	0.99862	0.01056	-0.46	-0.28
18.5	0.99853	0.01043	-0.35	-0.22
19.0	0.99843	0.01030	-0.25	-0.16
19.5	0.99834	0.01017	-0.15	-0.09
20.0	0.99823	0.01005	-0.04	-0.03
20.5	0.99813	0.00993	0.07	0.04
21.0	0.99802	0.00981	0.18	0.11
21.5	0.99791	0.00969	0.29	0.18
22.0	0.99780	0.00958	0.41	0.25
22.5	0.99769	0.00947	0.53	0.33
23.0	0.99757	0.00936	0.66	0.41
23.5	0.99745	0.00925	0.80	0.50
24.0	0.99733	0.00914	0.95	0.59
24.5	0.99721	0.00904	1.11	0.69
25.0	0.99708	0.00894	1.27	0.79
25.5	0.99695	0.00884	1.45	0.90
26.0	0.99682	0.00874	1.64	1.02
26.5	0.99668	0.00864	1.85	1.15
27.0	0.99655	0.00855	2.07	1.28
27.5	0.99641	0.00846	2.30	1.43
28.0	0.99627	0.00836	2.55	1.58
28.5	0.99613	0.00827	2.81	1.75
29.0	0.99598	0.00818	3.10	1.92
29.5	0.99583	0.00809	3.40	2.11
30.0	0.99568	0.00801	3.72	2.31

Table 1.3: Effective Depth for 152 H and 151 H Hydrometers

Rm	EFFECTIVE DEPTH						
0	16.3	26	12.0	0	16.3	20	11.0
1	16.1	27	11.9	1	16.0	21	10.7
2	16.0	28	11.7	2	15.8	22	10.5
3	15.8	29	11.5	3	15.5	23	10.2
4	15.6	30	11.4	4	15.2	24	9.9
5	15.5	31	11.2	5	15.0	25	9.7
6	15.3	32	11.0	6	14.7	26	9.4
7	15.1	33	10.9	7	14.4	27	9.2
8	15.0	34	10.7	8	14.2	28	8.9
9	14.8	35	10.6	9	13.9	29	8.6
10	14.7	36	10.4	10	13.7	30	8.4
11	14.5	37	10.2	11	13.4	31	8.1
12	14.3	38	10.1	12	13.1	32	7.8
13	14.2	39	9.9	13	12.9	33	7.6
14	14.0	40	9.7	14	12.6	34	7.3
15	13.8	41	9.6	15	12.3	35	7.0
16	13.7	42	9.4	16	12.1	36	6.8
17	13.5	43	9.2	17	11.8	37	6.5
18	13.3	44	9.1	18	11.5	38	6.2
19	13.2	45	8.9	19	11.3		
20	13.0	46	8.8				
21	12.9	47	8.6				
22	12.7	48	8.4				
23	12.5	49	8.3				
24	12.4	50	8.1				
25	12.2						

